최근 Lidar(Light Detection and Ranging)를 이용한 3차원 계측은 자동운전을 위한 지도 작성, 이동 로봇의 내비게이션, 상공의 지형 계측 등 다양한 분야에서 이용되고 있다. 현재 이용되고 있는 Lidar의 대부분은 근적외 펄스 레이저를 이용해 대상물까지의 ‘거리’와 ‘방향’을 계측하는 것이다. 거리 계측은 Time of Flight (ToF) 방식에 의해 레이저를 발사한 후 대상물에 닿아 반사되어 되돌아올 때까지의 시간으로부터 산출한다. 레이저의 발사 각도는 회전형 Lidar의 경우에는 엔코더 등의 센서로 계측할 수 있기 때문에 대상물까지의 방향을 계측할 수 있다. 이것에 의해 Lidar에서 대상물까지의 상대적인 3차원 벡터를 계측할 수 있다. Lidar를 이동체에 탑재해 이동하면서 상대적인 3차원 계측을 하는 것으로, 대규모 환경의 3차원 계측이 가능해진다. 차량, 항공기, 이동 로봇 등의 여러 가지 플랫폼에 Lidar를 탑재해 환경을 계측하는 기법이 이용되고 있는데, 최근 드론, UAV(Unmanned Aerial Vehicle)에 Lidar를 탑재한 UAV-Lidar에 의한 3차원 계측이 급속히 확산되고 있다. 지금까지 UAV에
산업 자동화 기술은 지난 2년 간 혁신을 통해 큰 도약을 이루었다. 전문가들은 산업 자동화가 2027년까지 3,000억 달러가 넘는 매출을 올릴 것으로 전망하고, 이들 성장의 상당 부분은 미량 원소의 미량 검출과 같은 기술 발전에서 기인한다고 보았다. 자동차, 전자, 의료 및 가정용 제품과 같이 대부분 엄격한 안전 및 품질 규정을 적용받는 다양한 산업 전반에 걸쳐 생산이 크게 증가하고 있으며 로봇공학, 산업용 사물인터넷(IIoT), 인공지능(AI) 및 프로그래머블 로직 컨트롤러(PLC)의 통합은 이러한 거대한 도약을 가능하게 한다. 이 글에서는 산업 자동화 기술의 혁신이 다양한 제조 시나리오에서 어떻게 활용돼 사이클 주기를 단축하고 일관된 제품 품질을 제공하면서 작업자에 미치는 위험을 완화하는 데 기여하는지 살펴본다. 산업 자동화 유형 산업 자동화는 제조 환경에서 기계를 사용하여 반복 작업을 수행하는 것을 말한다. 여기에는 무거운 물건을 들어 올리거나 위험한 물질의 취급 또는 극한 온도에서의 작업 등 작업자에게 위험을 초래할 수 있는 업무가 포함될 수 있다. 작업을 완료하기 위해 공정이 자동화되면 결합된 산업 자동화 기술이 로직과 프로그래밍을 사용하여 거의