테크노트 인지 기능에 데이터 구동형 모델로 다가간다
신경과학 분야에서는 계측 기술의 급속한 발전으로 신경 활동의 측정 방법과 그에 의해 얻어지는 데이터가 급속하게 진화하고 있다. 전극을 직접 대상 영역에 꽂아 신경세포의 활동을 전기적으로 측정하는 전기생리학적인 측정에서는 동시에 100개 오더(최신 Neuropixels에서는 1,000개 오더)의 세포를, 대상 동물이 과제를 수행하는 동안에 실시간으로 몇 시간 이상 측정할 수 있다. 또한 칼슘 이미징 등의 신경 활동을 광학적인 활동으로 변환해 측정하는 방법이라면, 시간 정도가 떨어지지만 1000개 오더(100000개를 취할 수 있다는 이야기도 있다)의 세포 활동을 며칠에 걸쳐(!) 측정할 수 있게 됐다. 즉, 신경과학 분야에서 연구자는 매우 큰 데이터에서 신경계 정보 처리의 바탕에 있는 원리·기구를 추출해야 하는 과제에 직면해 있다. 이 글에서는 이 대자유도 데이터와 씨름하고 있는 신경과학에서 급속히 발전하고 있는 역학계적 견해·해석 방법을 소개한다. 여기서는 데이터 해석뿐만 아니라 순환 신경망(RNN)을 이용한 데이터 구동형 모델의 접근법이 많이 이용되고 있으며, 이 접근법을 중심으로 설명하고자 한다. 대자유도 데이터로서의 신경 활동 일찍이 2000년대 초반까
- 쿠리가와 토모키, 하코다테미래대학 복잡지능학과
- 2024-01-03 14:41