[헬로티] 케빈 메러디스(Kevin Meredith) 샘텍 제품 엔지니어 인쇄 회로 기판(PCB) 회사들은 밀도를 더 높이고, 풋프린트를 축소하고, 높이를 낮추고, 열을 관리하고, 더 높은 데이터 레이트를 지원하고, 신뢰성을 높이면서 동시에 비용은 낮추라는 압박을 끊임없이 받고 있다. PCB 기술은 이러한 압박에 성공적으로 대응하며 꾸준히 발전해 왔는데, 최근 PCB 설계 엔지니어들 사이에는 새로운 과제가 떠오르고 있다. 두 장의 PCB 사이에 여러 개의 커넥터 세트를 사용해야 할 때, 이들을 정렬하기가 점점 더 까다로워지고 있다는 것이다. 그렇다면 갈수록 긴축하는 예산과 촉박해지는 출시 일정 속에서 어떻게 해야 시스템 성능과 밀도, 신뢰성을 해치지 않으면서 이러한 정렬 문제를 해결할 수 있을까? 이 글에서는 커넥터 정렬 문제에 대해서 살펴보고 최신 PCB와 신뢰성 높은 고밀도 커넥터의 상충되는 요구를 비용 효과적으로 충족할 수 있는 방법에 대해 알아본다. 소형화로 인해 까다로워진 커넥터 정렬 PCB는 밀도, 데이터 레이트, 열 관리, 신뢰성 등 다양한 측면에서 발전을 지속해 왔다. 크기 면에서도 많이 축소되었는데, 이 때문에 설계 엔지니어들은 커넥터를 선택
지속적으로 자동차 이용자 수가 늘어나면서, 교통안전 확보에 대한 필요성도 커지고 있다. 독일은 2011년 약 4천여 명의 교통사고 사망자를 기록한 바 있다. 이는 전년대비 약 10%가 증가한 수치다. 물론 도로교통 안전을 위한 인프라 구축과 교통법규 시행 등이 선행되어야겠지만, 이 외에 자동차 내에서 교통사고를 미리 예방할 수 있는 기술적인 무엇인가가 필요할 것으로 보인다. 이 글에서는 교통안전을 확보하기 위한 기술적인 부분에 대해 알아본다. 매해 교통사고 발생 수가 늘어나고 있다. 자연스레 부상자와 사망자 수가 증가하면서 자동차를 이용한 이동과 도로 수송을 더 안전하고 원활하게 할 수 있는 적절한 조치가 취해져야 할 필요성이 제기되고 있다. 인프라 구조의 개선과 교통 법규의 엄격한 시행 외에도 자동차 내에서 기술적으로 교통안전을 위한 새로운 개념을 발굴하는 데 보다 노력해야 한다. 어떤 기술이 필요할까? 현재로서는 높은 해상도와 감도, 동적 범위를 갖는 이미지 센서가 가장 유력한 대안인 것으로 보인다. 도로 교통안전을 위한 조치 독일 연방 통계국(German Federal Statistic Office)이 최근 발표한 수치는 우리의 안전의식에 경종을 울리고
전기차의 제어시스템에는 여러 기능을 구현하기 위해 여러 리졸버가 사용된다. 리졸버는 아날로그 출력을 디지털 형식으로 바꾸어 전기차의 ECU에 전달해야 하는데, 이 작업을 수행하는 것이 RDC 인터페이스이다. 이 글에서는 RDC 인터페이스 회로의 아키텍처를 살펴보고, 디지털 트랙킹 루프에 기반한 RDC 아키텍처와 특별한 전기차 애플리케이션의 설계 고려사항에 대해 알아본다. 리졸버는 격렬하고 거친 환경에 흔히 쓰이는 각도 위치 센서이다. 전기차(EV)의 다양한 제어시스템에는 여러 리졸버를 사용하여 회전 운동을 할 수도 있고, 시스템 중복성을 위해 리졸버를 추가하여 안전을 기할 수도 있다1). RDC(resolver-to-digital converter) 인터페이스는 리졸버 센서의 아날로그 출력을 처리하여 디지털 형식으로 전기차의 ECU(engine control unit)에 전달한다. RDC 인터페이스를 설계 시에는 차량 가속과 같은 회로가 엄격한 조건에서도 일정하게 작동할 수 있도록 정확한 RDC 아키텍처를 선택해야 한다. 이 글에서는 RDC 인터페이스 회로의 아키텍처를 개략적으로 살펴보고자 한다. PGA411-Q1은 여기에서 설명하는 RDC 인터페이스의 한
브러시 모터는 더 효율적인 브러시리스 모터로 서서히 대체되는 추세이다. 이는 부분적으로 여전히 브러시 모터가 가격 면에서 유리하다는 점도 있지만, 브러시리스 모터 시스템의 실행에 기술적 어려움이 있다는 것이 더 큰 이유이다. 반도체 기술이 최근 몇 년 사이에 싸지만 비효율적인 백열등을 사라지게 했듯이 브러시 모터 역시 동일한 영향을 받을 것으로 보인다. 이와 관련해, 브러시 및 브러시리스 모터 시장의 최근 동향을 알아본다. 브러시 전기 모터와 백열등은 많은 공통점을 지니고 있다. 두 아이템은 19세기에 발명된 이후, 사용이 쉬웠기 때문에 20세기 동안 매일 어디서든 생활 속에 깊이 자리 잡았으나 현재는 사용되지 않는다. 그러나 백열등이 이제는 거의 사라져가는 것과 달리 브러시 모터는 더 효율적인 브러시리스 모터로 서서히 대체되는 추세이다. 이는 부분적으로 여전히 브러시 모터가 가격 면에서 유리하다는 점도 있지만, 브러시리스 모터 시스템의 실행에 기술적 어려움이 있다는 것이 더 큰 이유이다. 반도체 기술이 최근 몇 년 사이에 싸지만 비효율적인 백열등을 사라지게 했듯이 브러시 모터 역시 동일한 영향을 받을 것으로 보인다. 전기 모터는 우리 생활 속 어디에서나 사
스마트 시티 에코시스템은 새롭고 혁신적인 관련 애플리케이션들이 밀려들면서 보다 효율적인, 지속가능성의 사회를 만드는 핵심 전략으로 주목받고 있다. 스마트 시티는 스마트 공공 조명, 스마트 전력 및 가스 미터링, 스마트 센서 노드, 스마트 빌딩, 스마트 주차, e-모빌리티, 스마트 쓰레기 등의 기술을 포함한다. 이 글에서는 IoT 기술을 활용한 스마트 시티의 단면에 대해 살펴본다. IoT(Internet of Things, 사물 인터넷)는 스마트 노드, 주로 저전력 저비용 센서 노드를 이용하는 네트워크를 일컫는 용어로, 데이터를 센싱하여 사람의 직접적인 개입 없이 클라우드와 정보를 송수신(communication)하는 것을 말한다. 웹 클라우드는 이러한 데이터 정보를 수집, 처리하고 보호한다. 이를 지정된 사람과 공유하거나 공공재에 서비스를 제공한다. 결국 이러한 기술을 통해 삶의 질을 향상시키는데 목적을 두고 있다. 이러한 IoT 시나리오는 웨어러블, 스마트 홈, 스마트 카, 스마트 시티를 네 개의 주요 애플리케이션 축 (pillars)으로 삼는다. 현재 스마트 시티용 애플리케이션이 사물 인터넷을 키우는 시장으로 부상하고 있다. 스마트 시티에는 스마트 빌딩,
반도체 제조업체는 전자 분야의 진화하는 요구에 맞추어 진화해야 한다. 단순히 IC를 개발하고 생산하는 것만으로는 더 이상 충분치 않다. 또한 반도체 업체들은 철도, 풍력 터빈, 자동차, 세탁기 어느 것이든 고객의 시스템에 대한 이해를 기반으로 개발해야 한다. 반도체는 빠르게 움직이는 글로벌 전자 산업의 기초이자 21세기 삶을 영위하는 데 없어서는 안 될 일부가 되었다. 컴퓨터, 통신 장비, 소비가전, 모바일 기기, 자동차, 항공, 의료 장비, 조명, 산업 자동화 시스템 및 신재생 에너지 등 몇 가지 예만 봐도 모두 효율적인 성능을 제공하기 위해 이러한 반도체에 의존하고 있다. 실제로 반도체와 에너지 효율적인 전력 관리와 모션 제어를 목표로 하는 중요한 기술들은 인류의 지속적인 발전 및 지구의 환경과 소중한 자원 보존에 있어 핵심적이라고 말해도 과장은 아니다. 인피니언은 더 많은 것을 실현하면서 더 적은 자원을 소모하고 누구나 쉽게 접근할 수 있는 기술을 사용해서 삶을 더 편리하고, 안전하고, 친환경적으로 만들고 있다고 믿고 있다. 최근의 역사를 돌아보면, 반도체의 탄생은 최초의 트랜지스터가 등장한 1954년으로 거슬러 올라간다. 그때까지 많은 과학자들은 반도
대용량 배터리 시스템의 사용이 빠르게 늘어나고 있다. 이는 배터리 기술과 소재가 지속적으로 발전해왔기 때문이다. 하지만, 최근 출시되는 배터리는 용량, 수명 및 안전성을 유지하기 위해 세심한 모니터링과 제어가 필요하다. 따라서 대용량 배터리 팩은 정교한 배터리 관리 전자장치를 필요로 한다. 이 글에서는 리니어의 멀티셀 배터리 스택 모니터링 IC LTC6811에 대해 알아본다. 전기차(EV)와 하이브리드전기차(HEV)뿐만 아니라 백업용 및 비중단용 에너지 저장 같은 부수적인 시장까지 대용량 배터리 시스템의 사용이 빠르게 늘어나고 있다. 이는 배터리 기술과 배터리 소재가 지속적으로 발전해 왔기 때문이다. 그렇기는 하나 첨단 배터리는 용량, 수명, 안전성을 유지하기 위해서는 세심한 모니터링과 제어를 필요로 한다. 그런데다가 수 킬로와트 규모의 시스템을 구축하기 위해서는 수십 혹은 수백 개의 배터리 셀들을 직렬로 연결해야 한다. 시스템의 관점에서는 배터리 스택이 하나의 단일적인 전원 소스라고 하더라도 각각의 개별 배터리 셀을 세심하게 관리하는 것이 필요하다. 이런 이유에서 대용량 첨단 배터리 팩은 정교한 배터리 관리 전자장치를 필요로 한다. 배터리 셀을 관리하기 위
EtherCAT은 다양한 이더넷 프로토콜보다 높은 요구조건의 등시성 전송률 보장, 대역폭 및 간섭 내구성이 우수하지만, CAN과 같은 여타 시스템 버스만큼 보편화되지 못했다. 하지만 앞으로는 EtherCAT의 낮은 구현 비용, 우수한 제품 품질 달성, 장기적인 부품 공급 및 통합 개발환경 제공 등의 장점을 갖춘 XMC4800이 이러한 판도에 변화를 줄 수 있을 것으로 기대된다. EtherCAT은 어떤 실시간 이더넷 프로토콜보다도 높은 요구조건의 등시성 전송률 보장, 대역폭 및 간섭 내구성을 갖추고 있다. EtherCAT은 지속적으로 진화하면서도, 확장된 IP 코어의 기능을 사용하더라도 언제나 하위 호환성을 유지한다는 장점이 있다. 하지만 이러한 이점에도 불구하고 CAN과 같은 여타 시스템 버스만큼 보편화 되지 못하고 있다. 이러한 상황에서 인피니언의 XMC4800 마이크로컨트롤러는 이러한 판도에 변화를 줄 수 있을 것으로 기대된다. 그 이유는 EtherCAT의 낮은 구현 비용, 우수한 제품 품질 달성, 장기적인 부품 공급(적어도 2027년까지) 및 EtherCAT 시스템 버스를 이용한 어플리케이션과 EtherCAT 응용 프로토콜 개발이 용이하도록 통합 개발환
전기자동차, 웨어러블 기기와 같은 애플리케이션에서 배터리 관리 시스템은 매우 중요하다. 특히 배터리 관리 시스템의 심장부라 할 수 있는 멀티셀 배터리 모니터 장치에 대해 살펴보는 것은 상당히 흥미로운 일일 것이다. 따라서 이 글에서는 4세대에 걸친 리니어 테크놀로지의 멀티셀 배터리 모니터의 발전상과 최신 멀티셀 배터리 모니터 LTC6811에 대해 알아본다. 전기 자동차의 상용화 가능성에 대해 제기되던 의문은 오래 전에 잠잠해졌다. 이제 가능성에 대한 질문보다 “이러한 새로운 고전력 배터리 기술이 얼마나 멀리, 얼마나 광범위하게, 그리고 얼마나 깊게 침투할 것인가?”에 대한 질문이 주요 쟁점이 됐다. 하지만, 이에 대한 문제는 그 누구도 확실히 대답할 수 없을 것이다. 하지만 배터리 관리 시스템(BMS), 특히 그 중에서도 심장부에 있는 멀티셀 배터리 모니터 장치의 발달을 살펴보는 것은 흥미로운 주제가 될 것이다. 그러한 과정에서 배터리 백업 시스템에서부터 입는 웨어러블 수트에 이르기까지 다양한 애플리케이션에서 고전압 배터리 팩이 어느 정도 적용될지 단서를 얻게 될지 모른다. 다음에서는 한 제품군에서 전개된 발전을 안전, 정확도, 기능,
최근 자동차의 전장화로 인해 차량의 작동은 물론 엔터테인먼트와 편의 기능들에서 점점 더 많은 전자장치에 의존함에 따라, 간섭 오류 없이 작동하고 차량 내 다른 시스템에 간섭을 일으키지 않아야 하는 요구사항이 더욱 커지고 있다. 따라서 이 글에서는 EMC 및 EMI 간섭 없이 장비 및 요건에 적합한 설계법을 알아본다. 오토모티브 산업 및 개별 오토모티브 제조업체들은 제품을 제조할 때 여러 전자기 호환성(EMC) 요건을 충족시켜야 한다. 이 두 가지 요건은 전자 시스템이 과도한 전자기간섭(EMI)이나 잡음을 방출하지 않아야 하며, 다른 시스템이 방출하는 잡음에 영향을 받지 않아야 한다는 것이다. 이 글에서는 이러한 요건들을 살펴보고 장비 및 요건에 적합하게 설계할 수 있는 몇 가지 요령과 기법을 제안하고자 한다. EMCU 요건 개요 CISPR 25는 차량에 설치할 부품의 방사 잡음 레벨을 평가하기 위해 허용치를 설정한 몇 가지 검사 방식들의 표준이다1), 2). CISPR 25가 제조사에 제시하는 지침 외에도 대부분의 제조업체들은 자체 표준 세트로 CISPR 25 가이드라인을 증대하고 있다. CISPR 25 검사의 주된 목적은 자동차에 설치할 부품이 차량 내 다
이 글에서는 ADAS에서의 끊김 없는 비디오 카메라 시스템 통합에 대해 살펴본다. TDMA(Time Division Multiple Access), 유연한 스타 토폴로지(star topology), 원격 컨트롤 기능을 사용한 다중채널 네트워크 기법에 기반한 MOST 기술은 시스템 솔루션 관점에서 최적의 기능을 제공한다. ADAS(첨단 운전자 지원 시스템)는 자동차 내의 다양한 전기/전자 시스템에 대한 인터페이스로서 자동차의 필수적인 요소로 자리 잡고 있다. 자동차는 인체와 마찬가지로 다수의 기능들을 구현하고 네트워크로 연결해야 한다. 이러한 기능은 카메라, 레이더, 초음파 같은 센서 장치, 프로세싱 장치, 엑추에이터를 포함한다. 복잡한 활용 사례들을 고려하여 자동차 내 각기 다른 영역들이 서로 정보를 교환할 수 있도록 하기 위해서는 적절한 네트워크 인프라를 선택하는 것이 무엇보다 중요하다. 그래야만 효율적인 시스템을 구축할 수 있기 때문이다. 기능적인 관점에서 운전자 지원 시스템은 전통적인 인포테인먼트 시스템의 영역을 확대하는 것이라고 할 수 있다. 그림 1에서 볼 수 있듯 운전자 지원은 E/E 에코시스템의 필수적인 요소가 되고 있다. ADAS와 인포테인먼트
MQTT 및 CoAP는 폭발적으로 성장하는 IoT 시장을 위한 주요 경량 메시징 프로토콜로서 빠르게 부상하고 있다. 각각의 프로토콜은 고유의 장점을 가지고 있으며, 각기 다른 과제와 트레이드오프를 제기한다. 두 프로토콜은 모두 경량 최종 노드를 거의 모든 네트워크에서 필수적으로 요구되는 메쉬형 네트워킹 애플리케이션과 표준간의 통신을 가능하게 하는 게이트웨이 브리징 로직으로 구현하고 있다. 조지 워싱턴 대학(George Washington University)의 필립 하워드(Philip N. Howard)는 최근 발표한 기고문에서 2014년에 이미 커넥티드(connected) 기기의 수가 세계 인구 수를 넘어섰다고 추정하면서 2020년에는 500억 개에 달하는 기기들이 서로 연결되는 사물 인터넷(IoT) 시대를 맞이하게 될 것이라고 전망했다. 달리 말하면, 사람들이 끊임없이 점점 더 많은 기기를 인터넷에 연결함에 따라 지금껏 연결된 적이 없거나 존재하지 않았던 또는 이제 그러한 연결을 핵심 기능으로 사용하는 인터넷에 연결되는 ‘사물’들의 폭발적인 성장이 다가오는 시대가 열리고 있다는 것이다. 이제 문제는 ‘이렇게 연결된 수십 억