연결된 기기와 데이터에 대한 비용 효율적인 보안 환경을 구축하는 것은 많은 기업에게 중요한 과제이다. 물론, 연결 및 통신에 대한 표준을 활용할 수도 있지만, 처음부터 해당 기기에 필요한 인증서와 키를 주입할 수 있다면 더 효과적이지 않을까? 대부분의 경우, 이러한 보안 영역은 제조 과정에서 이루어진다. 공장에는 고객이 인증기관 장비를 직접 운영할 수 있도록 안전한 공간이 마련되어 있다. 그러나 제품이 배치되는 환경에 따라 각기 다른 구성이 필요할 수 있으며, 이러한 보안 자산을 공장 현장에서 처리할 경우 새로운 과제가 발생하게 된다. 고객의 특화된 요구에 따라 맞춤형 소량 생산(Batch 단위)을 구축하는 것은 상당한 비용이 소모되고, 납기도 길어질 수 있다. nRF 클라우드 보안 서비스(nRF Cloud Security Service)는 배포 단계에서 원격으로 기기를 네트워크에 등록할 수 있는 프로비저닝 솔루션을 제공한다. 이를 통해 일반적인 방식으로 기기를 생산할 수 있도록 제조 과정을 간소화하고, 제조 및 운영 환경에서 보안을 강화할 수 있다. 이 글에서는 nRF 클라우드 보안 서비스에 대한 개요와 이 서비스를 통해 어떻게 효율적으로 셀룰러 IoT를
“AI는 현재 ‘황금기’를 맞이하며, 한때 공상과학으로 여겨졌던 문제들까지도 해결하고 있다.” (제프 베조스) 그럼에도 불구하고 AI에 대한 의견은 여전히 엇갈린다. 골드만삭스 그룹의 짐 코벨로(Jim Covello)는 1990년대 후반의 닷컴 열풍과 최근의 암호화폐 붐을 언급하며, AI에서도 이와 유사한 현상이 나타날 수 있다고 경고한다. 반면 같은 회사의 조셉 브릭스(Joseph Briggs)는 AI가 업무의 약 4분의 1을 자동화해 경제 성장을 촉진할 것으로 전망하고 있다. AI를 차세대 대세로 보는 의견에 동의하든 반대하든, 픽테 웰스 매니지먼트의 동 첸(Dong Chen)이 언급한 단기 투자 테마는 주목할 만하다. 그의 세 가지 주요 트렌드 중 두 가지는 AI와 산업 부문의 가능성을 나타내며, 이는 전기화, 탈탄소화, 디지털화와 같은 산업 전환 동향과도 밀접하게 연결되어 있다. 산업용 AI를 통한 모멘텀 확보 산업용 AI는 제조 기업이 오퍼레이셔널 엑설런스(Operational Excellence)에 도달하도록 돕는 중요한 도구로, 에너지 전환 목표 달성에 핵심적인 역할을 한다. AI 모델에 내장된 안전 가드레일을 통해 기업은 효율성을 높이고 설비
초음파는 기체·액체·고체에 상관없이 매질이 있으면 전파된다. 초음파는 일반적으로 가청 주파수(20kHz) 이상의 주파수 음파를 가리키는데, 사람이 듣는 것을 목적으로 하지 않는 경우, 가청 주파수 내라도 초음파라고 부르고 있다. 초음파의 이용은 ①거리 계측이나 센싱 등 계측 신호로서 취급하는 경우, ②초음파 부양이나 세정 등 힘이나 에너지로서 취급하는 경우, ③센서나 필터 소자 등의 기능성 부품으로서 취급하는 경우로 나눌 수 있다. 또한 매질로 이용을 나누면, 고체 중의 이용은 초음파 탐상기, 금속의 절삭·가공이나 접합, 초음파 현미경, 클락용 수정 진동자, SAW 필터 소자 등이 있고, 액체 중(수중)에서는 초음파 진단장치, 어군탐지기, 유속계, 초음파 세정, 고체 입자의 분산·유화, 안개화 등 다방면에 이용된다. 이들에 대해 공기 중의 이용은 거리계나 차재용의 초음파 센서 등이 있는데, 그다지 많다고는 할 수 없다. 이것은 기체 중에 대출력의 초음파 에너지가 방사되기 어렵기 때문이다. 진동체로부터 방사되는 음향 파워는 매질에 고유의 값인 고유 음향 임피던스 ρc(ρ는 매질의 밀도, c는 매질 중의 소리 전파 속도)의 크기로 결정된다. 공기의 밀도 ρ는 액
최근 강력한 공중 초음파에 관한 다양한 연구가 이루어지고 있다. 그 중의 하나인 공중 초음파를 이용한 촉각 제시의 연구가 2008년에 시작됐다. 강력한 공중 초음파의 비선형 효과를 활용하는 기술의 대표 예로는 파라메트릭 어레이라고 하는 초지향성 스피커가 있는데, 그 기원은 1980년대까지 거슬러 올라간다. 파라메트릭 어레이와 촉각 제시의 페이즈드 어레이(Phased array)(이후 Airborne Ultrasound Tactile Display, AUTD)의 구성 요소는 거의 동일했지만, AUTD에서는 집속 빔에 의해 공간의 1점에 보다 강한 음장을 만들려고 한 것이 약간의 차이였다. 수천 파스칼이 넘는 음압, 즉 전형적인 공중 파라메트릭 어레이보다는 두 자리 이상 높은 에너지 밀도에 의해 촉각을 생성할 수 있다는 것이 확인되어 초음파 촉각 제시의 연구가 순조롭게 시작됐다. 이때 개발된 초음파 페이즈드 어레이는 강력 공중 초음파를 쉽게 만들어낼 수 있는 귀한 장치이기도 했다. 주변의 물체에 조사해 보면 경량 물체를 움직일 수 있는데다가, 음향류의 생성, 액체의 기화 촉진 등 현저한 효과를 눈앞에서 확인할 수 있어 공중 초음파 연구 영역이 확대되기도 했다.
이더넷-APL은 PROCESS 계장표준으로 세계 전문 표준개발기구 4곳과 12개의 국제 자동화 메이커에서 합의하여 IEC/IEEE 등의 국제표준기관에서 공인된 새로 나온 신기술이므로, 자세한 설명과 해설이 필요하고 이 기술의 핵심 요체를 설명하는데 자세한 안내가 필요하므로 ‘이더넷-APL 길라잡이’라는 이름을 붙여 내용을 안내 하고자 작명을 했다. 지난 호에 이어 이 글에서는 이더넷-APL 케이블의 다섯 가지 실드(Sheld) 방법의 대안을 제시코자 한다. 그리고 시운전의 단계로 APL 네트워크 설치의 허용 테스트를 소개한다. 케이블 실드 취급 다양한 유형의 APL 장치는 케이블 실드를 잠재적 평형 시스템에 연결하는 다양한 방법을 제공한다. 그림 1은 케이블 실드를 연결하는 여러 방법에 대한 개요를 보여준다. · 대안(1) : 실드는 APL 커넥터의 3번 단자에 연결된다. 피그테일(pig tail)은 연결에 유도성을 추가하고 케이블 실드의 효율성을 저하시킨다. · 대안(2) : 실드는 실드 클램프에 연결된다. APL 장치 제조업체가 허용하는 경우 피그테일을 생략할 수 있다. 이는 시간과 노력을 절약하며, 실드 연결과 잠재적 평형 시스템 간의 임피던스를 줄인다
브라이트 필드(Bright field)와 다크 필드(Dark field)는 머신비전 전문가가 비전 검사에서 조명을 검토할 때 사용하는 용어다. 브라이트 필드와 다크 필드를 활용해 조명 각도를 조절하면 표면 검사를 진행할 때 검사하고자 하는 영역을 균일하고 선명하게 부각할 수 있어 업계에서는 일반적으로 활용하고 있다. 브라이트 필드에 대한 정확한 이해 머신비전 업계에서 일반적으로 사용하고 있음에도 불구하고 아직까지 브라이트 필드와 다크 필드에 대한 정확한 개념을 혼동하는 경우가 있다. 특히 많은 사람들이 브라이트 필드를 화각(FOV)과 혼동하곤 한다. 그러나 브라이트 필드와 화각(FOV)은 광학 및 이미징 분야에서 분명 서로 다른 개념이다. 브라이트 필드는 렌즈나 광학 장치에서 빛이 모이는 영역을 가리키는 용어로 빛을 모으거나 집중시키는 영역을 나타낸다. 반면 화각은 카메라나 눈이나 기타 광학 장치로 볼 수 있는 시야의 넓이를 말한다. 즉, 화각이 넓을수록 한 장면에서 볼 수 있는 영역이 넓어지는 것을 의미하는 것이다. 따라서 브라이트 필드는 광을 모으는 영역에 관한 것이고 화각은 시야의 넓이에 관한 것이라고 이해할 수 있다. 브라이트 필드는 아래 면이 거울이
오늘날 특히 인력 부족과 기술 전승의 문제에 대해서는 여러 다양한 업계에서 중요한 과제이며, 공작기계 업계에서도 설비의 복합화와 자동화 시스템의 수요는 해마다 증가하고 있다. (주)타이요코키에서도 로봇이나 갠트리로더, APC(Auto Pallet Changer) 시스템 등을 사용한 자동화 시스템은 증가하는 경향에 있다. 그 중에서 이 글에서는 (주)타이요코키가 시티즌머시너리주식회사에서 공급받은 여러 대의 ‘CNC 복합 원통연삭반’, ‘CNC 복합 내면연삭반’ 및 2대의 ‘DMG모리세이키제 AMR(Autonomous Mobile Robot) WH-AMR’을 사용한 공작기계 스핀들의 연삭가공 자동화 시스템에 대해서 소개한다(그림 1). AMR 연삭가공 라인의 구성 다음의 설비·공정이 시티즌머시너리주식회사의 제안으로 (주)타이요코키가 공급받은 라인 구성이다(그림 2). ※센터 구멍 연삭반, 수축끼워맞춤 장치, 세정기 장치는 다른 메이커의 설비. ① IN 스토커 (타이요코키제) ↓ ② 레이저 마커 (시리얼 No., QR 코드를 각인/타이요코키제) ↓ ③ 센터 구멍 연삭 ↓ ④ 세정기 ↓ ⑤ 외경 연삭(거친가공) ※CNC 복합 원통연삭반 (타이요코키제) ↓ ⑥ 수축끼
연삭가공은 여러 산업 분야의 정밀한 제조를 지원하는 기반 기술이다. 근대 공업에서는 1800년대 후반에 미국의 브라운&샤프사제 만능연삭반 및 평면연삭반 등장을 계기로 가공 정도, 능률 향상을 위해 연삭반의 구조나 기구 등에서 오늘날까지 개선이 거듭되어 왔다. 그러한 가운데 연삭반에 대한 CNC 제어 기술이나 치수장치 등의 기상 계측 기술도 탑재되어 왔다. 한편, 연삭 숫돌에 대해서도 커런덤(corundum) 숫돌입자, 알런덤(alundum) 숫돌입자의 제법이나 비트리파이드 본드에 의한 소성 숫돌 제조법이 확립되어 연삭 숫돌의 품질이 향상됐다. 또한 인공다이아몬드 및 cBN 숫돌입자가 개발되어 난삭재의 연삭 능률이 비약적으로 향상됐다. 그리고 오늘날에는 연삭가공의 상황을 디지털 데이터로 인터넷 환경을 통해 집약해 연삭가공의 품질 관리나 프로세스 관리 등이 실현되고 있으며, 연삭가공 기술은 약 1세기 반에 걸쳐 그 시대의 산업 요구나 사회 환경 변화에 맞춰 진화를 계속해 왔다. 이 글에서는 현재도 진화가 계속되고 있는 연삭가공 기술의 동향과 그 진화에 필요한 시점에 대해서 설명하기로 한다. 연삭가공 기술의 진화 방향 연삭가공 기술은 항상 고능률화, 고정도
이더넷-APL은 PROCESS 계장표준으로 세계 전문 표준개발기구 4곳과 12개의 국제 자동화 메이커에서 합의하여 IEC/IEEE 등의 국제표준기관에서 공인된 새로 나온 신기술이므로, 자세한 설명과 해설이 필요하고 이 기술의 핵심 요체를 설명하는데 자세한 안내가 필요하므로 ‘이더넷-APL 길라잡이’라는 이름을 붙여 내용을 안내 하고자 작명을 했다. 이번 글에서는 APL 필드 장치 연결을 설명한다. APL 필드 장치 연결 APL은 다양한 방법으로 APL 장치를 연결할 수 있다. 이들 방법은 다음과 같다. · 나사 또는 클램프 터미널 · M12 커넥터 · M8 커넥터 (IS가 아닌 장치에만 해당) 일반적으로 APL 장치(스위치 또는 필드 장치)가 연결 기술을 정의한다. APL 배선은 장치에서 정의한 연결 기술을 따라야 한다. 연결 기술에 대한 특별한 요구사항이 있는 경우, APL 장치를 그에 맞게 선택해야 한다. 선택된 장치에 따라 하나의 케이블로 서로 다른 연결 기술을 결합해야 할 수도 있다. 예를 들어, 케이블의 한쪽 끝에는 M12 커넥터를 사용하고 다른 쪽 끝에는 터미널 연결을 사용하는 경우가 있다. 그림 1은 APL 케이블의 가능한 색상 할당을 보여준다.
오늘날 노동 인구 감소와 다품종 소량 생산이라는 사회 변화를 배경으로, 생산 리드타임 단축을 목적으로 한 설비 투자의 수요가 높아지고 있다. 야마자키마작에서는 유저 요구에 적절하게 대응하기 위해 그림 1에 나타낸 하이브리드 복합가공기를 제안하고 있다. 기어 절삭이나 연삭 등의 제거가공 외에 부가 가공인 금속적층조형(AM이나 WAAM), 그리고 마찰교반접합(FSW) 등을 융합한 복합가공기를 라인업하고 있다. 부품 제조에 필요한 가공을 할 수 있는 공작기계를 가지고 있지 않은 경우에는 사외의 협력 회사에 가공을 의뢰해야 하고, 리드타임이 길어지게 된다. 이와 같은 과제에 대해 하이브리드 복합가공기는 전용기 기능을 1대의 공작기계에 집약함으로써 자사 내에서 가공을 실현해 리드타임을 단축시킨다. 리드타임 단축 외에도 하이브리드 복합가공기 도입에 의해 품질 향상, 물류에 관한 CO2 배출량 절감, 지그나 플로어 스페이스 절감 등도 기대할 수 있다. 하이브리드 복합가공기는 생산량 변동에 대해서도 유연한 대응을 실현한다. 생산량이 늘어난 경우, 전용기를 포함한 생산 라인을 새롭게 편성하지 않고도 하이브리드 복합가공기로 대응할 수 있다. 반대로 생산량이 줄어든 경우에도 범
이더넷-APL은 PROCESS 계장표준으로 세계 전문 표준개발기구 4곳과 12개의 국제 자동화 메이커에서 합의하여 IEC/IEEE 등의 국제표준기관에서 공인된 새로 나온 신기술이므로, 자세한 설명과 해설이 필요하고 이 기술의 핵심 요체를 설명하는데 자세한 안내가 필요하므로 ‘이더넷-APL 길라잡이’라는 이름을 붙여 내용을 안내 하고자 작명을 했다. 지난 호에서는 서지 보호와 최소 APL 케이블 거리에 관해서 논의 했다. 이번 글에서는 APL 케이블 라우팅 권장 사항을 도표에 나열하는 방식으로 구체 적으로 설명을 하려고 한다. 도표의 연속이므로 다소 지루 한 감은 없지 않으나 구체적 통신망 처리 방법이므로 APL에서 놓칠 수 없는 주요사항 중 하나다. 케이블 라우팅 권장사항 아래 그림에 제시된 케이블 라우팅 권장사항을 준수 바란다. 케이블 매설 작업 지침 케이블 매설 공정은 아래 그림의 권장 사항을 준수한다. APL 케이블의 기계적 보호 APL 케이블의 기계적 보호를 보장하기 위해 아래 그림의 권장사항을 준수한다.
이 글에서는 많은 기업이 안고 있는 고민과 과제, 그리고 이들을 해결하기 위해 C&G시스템즈에서 개발·판매하고 있는 생산 관리 시스템 ‘AIQ’에 대해서 소개한다. 효율화·생력화에 기여하기 위한 여러 가지의 기능이 고려되어 있다. 최신판에는 AI 유사 이미지 검색 기능이 탑재되고 CAD/CAM 시스템과 연계하는 기능도 준비되어 있으며, 설계에서 제조까지의 과거 데이터를 심리스하게 활용할 수 있다. 금형 제조의 폐해와 과제 해결을 위한 생산 관리 시스템 금형 제조 현장에서는 어떤 기업이나 주문을 위한 견적 관리, 제조 공정이나 납기 관리, 재고품이나 재료와 같은 구입품 관리 등 방대한 관련 정보를 관리하고 있다. 관리하고 있는 정보의 종류는 기업마다 비슷하지만, 관리 기법은 천차만별이며 정보 공유의 방법이나 특급품 대응 등의 납기에 대한 접근도 다양하다. 많이 사용되고 있는 방법은 화이트보드에 의한 관리나 표계산 소프트웨어의 데이터 관리로, 이러한 관리 방법은 도입 비용이 적고 기능 습득에 걸리는 시간도 비교적 적기 때문에 모든 업무에서 활용되고 있다. 특히 표계산 소프트웨어에 관해서는 함수나 매크로 등을 이용한 관리 등 활용 수단이 많다. 그러나 도입
이 글의 큰 주제이기도 한 ‘데이터로 구동하는 시스템 제어—이론과 응용의 새로운 전개와 최신 동향—’에 대해서, 총론의 목적은 데이터 구동 제어의 지금까지 흐름과 최근 동향에 대해서 간단히 해설하는 것이다. 우선 데이터 구동 제어의 아웃라인을 그림 1에 나타냈다. 제어계를 설계하기 위해서는 시스템 동정 등에 의해 대상의 동특성 법칙을 나타내는 수식 모델을 작성하고, 그것에 근거한 설계를 추진하는 것이 통상의 합리적인 수단이다. 이것이 그림 1에서 보면 중심의 세로 화살표의 흐름이다. 한편 그림 1에서 대상의 수식 모델을 거치지 않고 데이터를 직접 이용함으로써 제어계를 갱신하거나(그림 1에서 A), 데이터에 직접 근거해 설계하는(그림 1에서 B나 C) 접근법이 활발히 연구되고 있다. 이들이 이른바 데이터 구동 제어라고 불리는 접근법이다. 최근 몇 년간 데이터 구동 제어에 관한 많은 연구 성과가 발표되고 여러 학회의 해설 기사나 논문 특집호에서도 많이 다루고 있으며, 국제회의에서도 관련된 OS 기획이나 강연이 활발하게 이루어지고 있다. 예를 들면 2023년 7월에 일본 요코하마에서 개최된 IFAC World Congress에서도 매우 많은 관련 세션이 편성되어
배전계통에 태양광 발전 도입량이 증가한 경우, 역조류에 의해 배전선의 전압이 상승한다. 따라서 배전계통 설비 계획을 할 때는 기존의 수요 예상에 기초한 설비 계획에 더해, 전압 상승분을 고려할 필요가 있다. 이 글에서는 태양광 발전에 의한 전압 상승 메커니즘을 설명하고, 배전 설비 측과 태양광 발전 설치자 측의 대책을 다루어 본다. 일부 대책의 효과에 대해서는 계산기 시뮬레이션 예를 제시한다. 또한 최근 태양광 발전의 도입량이 급격하게 증가한 배전선에서 배전선 전압의 저하, 전압 불평형의 확대, 전압 플리커와 같이 지금까지 볼 수 없었던 현상이 관측되고 있다. 이 글에서는 이러한 현상에 대해서도 개략적으로 설명한다. 배전계통의 구성 1. 배전계통의 개요 전력계통은 전압 레벨로 송전계통과 배전계통으로 크게 나뉜다. 송전계통은 화력 발전이나 수력 발전 등 대형 설비에서 발전된 전력을 수요의 중심지에 설치된 변전소까지 보내는 설비로, 전압 레벨은 500kV나 275kV와 같은 고전압이다. 배전계통은 그림 1에 나타냈듯이 66kV로 수전하는 배전용 변전소에서 전압 레벨을 6.6kV로 강압해 고압배전선, 주상변압기를 통해 각 가정까지 전력을 보내는 설비이다. 송전계통
산업혁명 이후, 제조업은 끊임없는 기술 혁신을 통해 생산성과 효율성을 높여왔다. 현재 제조업은 4차 산업혁명의 중심에 있으며, 그 중 하나의 핵심 기술은 로봇 비전 시스템이다. 특히 3D 로봇 비전 시스템은 현대 제조업에서 필수적인 요소로 자리잡고 있다. 이번 글에서는 제조업에서 왜 로봇의 눈이 필요한지와 이에 대한 시대적 흐름을 살펴보겠다. 로봇의 눈, 3D 비전 시스템의 필요성 1. 정확한 부품 처리와 조립 제조 공정에서 정확한 부품의 선택과 배치는 생산 효율성과 제품 품질에 직결된다. 전통적인 자동화 시스템은 고정된 위치에서 정형화된 작업만을 수행할 수 있지만, 3D 비전 시스템은 다양한 위치와 각도에서 부품을 인식하고 처리할 수 있어 더 유연한 생산 공정을 가능하게 한다. Pickit 3D 비전 시스템은 팔레트나 빈(통)에서 물체를 집어 원하는 위치에 정확하게 놓을 수 있도록 도와준다. 2. 숙련된 노동력 부족 문제 해결 제조업체들은 숙련된 노동력 부족으로 인해 어려움을 겪고 있다. 특히, 반복적이고 단순한 작업은 인력의 소모를 유발하며 생산성을 저하시킨다. 로봇 비전 시스템은 이러한 작업을 자동화하여 인력을 보다 고부가가치 작업에 투입할 수 있게 한